Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2268208

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health. In an effort to develop novel anti-coronavirus therapeutics and achieve prophylactics, we used gene set enrichment analysis (GSEA) for drug screening and identified that Astragalus polysaccharide (PG2), a mixture of polysaccharides purified from Astragalus membranaceus, could effectively reverse COVID-19 signature genes. Further biological assays revealed that PG2 could prevent the fusion of BHK21-expressing wild-type (WT) viral spike (S) protein and Calu-3-expressing ACE2. Additionally, it specifically prevents the binding of recombinant viral S of WT, alpha, and beta strains to ACE2 receptor in our non-cell-based system. In addition, PG2 enhances let-7a, miR-146a, and miR-148b expression levels in the lung epithelial cells. These findings speculate that PG2 has the potential to reduce viral replication in lung and cytokine storm via these PG2-induced miRNAs. Furthermore, macrophage activation is one of the primary issues leading to the complicated condition of COVID-19 patients, and our results revealed that PG2 could regulate the activation of macrophages by promoting the polarization of THP-1-derived macrophages into an anti-inflammatory phenotype. In this study, PG2 stimulated M2 macrophage activation and increased the expression levels of anti-inflammatory cytokines IL-10 and IL-1RN. Additionally, PG2 was recently used to treat patients with severe COVID-19 symptoms by reducing the neutrophil-to-lymphocyte ratio (NLR). Therefore, our data suggest that PG2, a repurposed drug, possesses the potential to prevent WT SARS-CoV-2 S-mediated syncytia formation with the host cells; it also inhibits the binding of S proteins of WT, alpha, and beta strains to the recombinant ACE2 and halts severe COVID-19 development by regulating the polarization of macrophages to M2 cells.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Polysaccharides , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Drug Repositioning , MicroRNAs , Polysaccharides/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Astragalus propinquus/chemistry
2.
Front Med (Lausanne) ; 9: 1009557, 2022.
Article in English | MEDLINE | ID: covidwho-2142058

ABSTRACT

Background: Lymphopenia and the resultant high neutrophil-to-lymphocyte ratio (NLR) are hallmark signs of severe COVID-19, and effective treatment remains unavailable. We retrospectively reviewed the outcomes of COVID-19 in a cohort of 26 patients admitted to Chung Shan Medical University Hospital (Taichung City, Taiwan). Twenty-five of the 26 patients recovered, including 9 patients with mild/moderate illness and 16 patients with severe/critical illness recovered. One patient died after refusing treatment. Case presentation: We report the cases of four patients with high NLRs and marked lymphopenia, despite receiving standard care. A novel injectable botanical drug, PG2, containing Astragalus polysaccharides, was administered to them as an immune modulator. The decrease in the NLR in these four patients was faster than that of other patients in the cohort (0.80 vs. 0.34 per day). Conclusion: All patients recovered from severe COVID-19 showed decreased NLR and normalized lymphocyte counts before discharge. Administration of PG2 may be of benefit to patients with moderate to severe COVID-19 and lymphopenia.

SELECTION OF CITATIONS
SEARCH DETAIL